3.1470 \(\int \frac{1}{a-b x^8} \, dx\)

Optimal. Leaf size=239 \[ -\frac{\log \left (-\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\log \left (\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}+1\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}} \]

[Out]

ArcTan[(b^(1/8)*x)/a^(1/8)]/(4*a^(7/8)*b^(1/8)) - ArcTan[1 - (Sqrt[2]*b^(1/8)*x)/a^(1/8)]/(4*Sqrt[2]*a^(7/8)*b
^(1/8)) + ArcTan[1 + (Sqrt[2]*b^(1/8)*x)/a^(1/8)]/(4*Sqrt[2]*a^(7/8)*b^(1/8)) + ArcTanh[(b^(1/8)*x)/a^(1/8)]/(
4*a^(7/8)*b^(1/8)) - Log[a^(1/4) - Sqrt[2]*a^(1/8)*b^(1/8)*x + b^(1/4)*x^2]/(8*Sqrt[2]*a^(7/8)*b^(1/8)) + Log[
a^(1/4) + Sqrt[2]*a^(1/8)*b^(1/8)*x + b^(1/4)*x^2]/(8*Sqrt[2]*a^(7/8)*b^(1/8))

________________________________________________________________________________________

Rubi [A]  time = 0.168881, antiderivative size = 239, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 10, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 1., Rules used = {214, 212, 208, 205, 211, 1165, 628, 1162, 617, 204} \[ -\frac{\log \left (-\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\log \left (\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}+1\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}} \]

Antiderivative was successfully verified.

[In]

Int[(a - b*x^8)^(-1),x]

[Out]

ArcTan[(b^(1/8)*x)/a^(1/8)]/(4*a^(7/8)*b^(1/8)) - ArcTan[1 - (Sqrt[2]*b^(1/8)*x)/a^(1/8)]/(4*Sqrt[2]*a^(7/8)*b
^(1/8)) + ArcTan[1 + (Sqrt[2]*b^(1/8)*x)/a^(1/8)]/(4*Sqrt[2]*a^(7/8)*b^(1/8)) + ArcTanh[(b^(1/8)*x)/a^(1/8)]/(
4*a^(7/8)*b^(1/8)) - Log[a^(1/4) - Sqrt[2]*a^(1/8)*b^(1/8)*x + b^(1/4)*x^2]/(8*Sqrt[2]*a^(7/8)*b^(1/8)) + Log[
a^(1/4) + Sqrt[2]*a^(1/8)*b^(1/8)*x + b^(1/4)*x^2]/(8*Sqrt[2]*a^(7/8)*b^(1/8))

Rule 214

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b),
 2]]}, Dist[r/(2*a), Int[1/(r - s*x^(n/2)), x], x] + Dist[r/(2*a), Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a,
 b}, x] && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]

Rule 212

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-(a/b), 2]], s = Denominator[Rt[-(a/b), 2]
]}, Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
 !GtQ[a/b, 0]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{a-b x^8} \, dx &=\frac{\int \frac{1}{\sqrt{a}-\sqrt{b} x^4} \, dx}{2 \sqrt{a}}+\frac{\int \frac{1}{\sqrt{a}+\sqrt{b} x^4} \, dx}{2 \sqrt{a}}\\ &=\frac{\int \frac{1}{\sqrt [4]{a}-\sqrt [4]{b} x^2} \, dx}{4 a^{3/4}}+\frac{\int \frac{1}{\sqrt [4]{a}+\sqrt [4]{b} x^2} \, dx}{4 a^{3/4}}+\frac{\int \frac{\sqrt [4]{a}-\sqrt [4]{b} x^2}{\sqrt{a}+\sqrt{b} x^4} \, dx}{4 a^{3/4}}+\frac{\int \frac{\sqrt [4]{a}+\sqrt [4]{b} x^2}{\sqrt{a}+\sqrt{b} x^4} \, dx}{4 a^{3/4}}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}+\frac{\int \frac{1}{\frac{\sqrt [4]{a}}{\sqrt [4]{b}}-\frac{\sqrt{2} \sqrt [8]{a} x}{\sqrt [8]{b}}+x^2} \, dx}{8 a^{3/4} \sqrt [4]{b}}+\frac{\int \frac{1}{\frac{\sqrt [4]{a}}{\sqrt [4]{b}}+\frac{\sqrt{2} \sqrt [8]{a} x}{\sqrt [8]{b}}+x^2} \, dx}{8 a^{3/4} \sqrt [4]{b}}-\frac{\int \frac{\frac{\sqrt{2} \sqrt [8]{a}}{\sqrt [8]{b}}+2 x}{-\frac{\sqrt [4]{a}}{\sqrt [4]{b}}-\frac{\sqrt{2} \sqrt [8]{a} x}{\sqrt [8]{b}}-x^2} \, dx}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}-\frac{\int \frac{\frac{\sqrt{2} \sqrt [8]{a}}{\sqrt [8]{b}}-2 x}{-\frac{\sqrt [4]{a}}{\sqrt [4]{b}}+\frac{\sqrt{2} \sqrt [8]{a} x}{\sqrt [8]{b}}-x^2} \, dx}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}-\frac{\log \left (\sqrt [4]{a}-\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\log \left (\sqrt [4]{a}+\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}\\ &=\frac{\tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\tanh ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )}{4 a^{7/8} \sqrt [8]{b}}-\frac{\log \left (\sqrt [4]{a}-\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}+\frac{\log \left (\sqrt [4]{a}+\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{b} x^2\right )}{8 \sqrt{2} a^{7/8} \sqrt [8]{b}}\\ \end{align*}

Mathematica [A]  time = 0.0563742, size = 198, normalized size = 0.83 \[ \frac{-\sqrt{2} \log \left (-\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )+\sqrt{2} \log \left (\sqrt{2} \sqrt [8]{a} \sqrt [8]{b} x+\sqrt [4]{a}+\sqrt [4]{b} x^2\right )-2 \log \left (\sqrt [8]{a}-\sqrt [8]{b} x\right )+2 \log \left (\sqrt [8]{a}+\sqrt [8]{b} x\right )+4 \tan ^{-1}\left (\frac{\sqrt [8]{b} x}{\sqrt [8]{a}}\right )-2 \sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}\right )+2 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [8]{b} x}{\sqrt [8]{a}}+1\right )}{16 a^{7/8} \sqrt [8]{b}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a - b*x^8)^(-1),x]

[Out]

(4*ArcTan[(b^(1/8)*x)/a^(1/8)] - 2*Sqrt[2]*ArcTan[1 - (Sqrt[2]*b^(1/8)*x)/a^(1/8)] + 2*Sqrt[2]*ArcTan[1 + (Sqr
t[2]*b^(1/8)*x)/a^(1/8)] - 2*Log[a^(1/8) - b^(1/8)*x] + 2*Log[a^(1/8) + b^(1/8)*x] - Sqrt[2]*Log[a^(1/4) - Sqr
t[2]*a^(1/8)*b^(1/8)*x + b^(1/4)*x^2] + Sqrt[2]*Log[a^(1/4) + Sqrt[2]*a^(1/8)*b^(1/8)*x + b^(1/4)*x^2])/(16*a^
(7/8)*b^(1/8))

________________________________________________________________________________________

Maple [C]  time = 0.013, size = 29, normalized size = 0.1 \begin{align*} -{\frac{1}{8\,b}\sum _{{\it \_R}={\it RootOf} \left ( b{{\it \_Z}}^{8}-a \right ) }{\frac{\ln \left ( x-{\it \_R} \right ) }{{{\it \_R}}^{7}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(-b*x^8+a),x)

[Out]

-1/8/b*sum(1/_R^7*ln(x-_R),_R=RootOf(_Z^8*b-a))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} -\int \frac{1}{b x^{8} - a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^8+a),x, algorithm="maxima")

[Out]

-integrate(1/(b*x^8 - a), x)

________________________________________________________________________________________

Fricas [B]  time = 1.39707, size = 1056, normalized size = 4.42 \begin{align*} -\frac{1}{4} \, \sqrt{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \arctan \left (-\sqrt{2} a^{6} b x \left (\frac{1}{a^{7} b}\right )^{\frac{7}{8}} + \sqrt{2} \sqrt{\sqrt{2} a x \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} + a^{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{4}} + x^{2}} a^{6} b \left (\frac{1}{a^{7} b}\right )^{\frac{7}{8}} - 1\right ) - \frac{1}{4} \, \sqrt{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \arctan \left (-\sqrt{2} a^{6} b x \left (\frac{1}{a^{7} b}\right )^{\frac{7}{8}} + \sqrt{2} \sqrt{-\sqrt{2} a x \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} + a^{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{4}} + x^{2}} a^{6} b \left (\frac{1}{a^{7} b}\right )^{\frac{7}{8}} + 1\right ) + \frac{1}{16} \, \sqrt{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \log \left (\sqrt{2} a x \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} + a^{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{4}} + x^{2}\right ) - \frac{1}{16} \, \sqrt{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \log \left (-\sqrt{2} a x \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} + a^{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{4}} + x^{2}\right ) - \frac{1}{2} \, \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \arctan \left (-a^{6} b x \left (\frac{1}{a^{7} b}\right )^{\frac{7}{8}} + \sqrt{a^{2} \left (\frac{1}{a^{7} b}\right )^{\frac{1}{4}} + x^{2}} a^{6} b \left (\frac{1}{a^{7} b}\right )^{\frac{7}{8}}\right ) + \frac{1}{8} \, \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \log \left (a \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} + x\right ) - \frac{1}{8} \, \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} \log \left (-a \left (\frac{1}{a^{7} b}\right )^{\frac{1}{8}} + x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^8+a),x, algorithm="fricas")

[Out]

-1/4*sqrt(2)*(1/(a^7*b))^(1/8)*arctan(-sqrt(2)*a^6*b*x*(1/(a^7*b))^(7/8) + sqrt(2)*sqrt(sqrt(2)*a*x*(1/(a^7*b)
)^(1/8) + a^2*(1/(a^7*b))^(1/4) + x^2)*a^6*b*(1/(a^7*b))^(7/8) - 1) - 1/4*sqrt(2)*(1/(a^7*b))^(1/8)*arctan(-sq
rt(2)*a^6*b*x*(1/(a^7*b))^(7/8) + sqrt(2)*sqrt(-sqrt(2)*a*x*(1/(a^7*b))^(1/8) + a^2*(1/(a^7*b))^(1/4) + x^2)*a
^6*b*(1/(a^7*b))^(7/8) + 1) + 1/16*sqrt(2)*(1/(a^7*b))^(1/8)*log(sqrt(2)*a*x*(1/(a^7*b))^(1/8) + a^2*(1/(a^7*b
))^(1/4) + x^2) - 1/16*sqrt(2)*(1/(a^7*b))^(1/8)*log(-sqrt(2)*a*x*(1/(a^7*b))^(1/8) + a^2*(1/(a^7*b))^(1/4) +
x^2) - 1/2*(1/(a^7*b))^(1/8)*arctan(-a^6*b*x*(1/(a^7*b))^(7/8) + sqrt(a^2*(1/(a^7*b))^(1/4) + x^2)*a^6*b*(1/(a
^7*b))^(7/8)) + 1/8*(1/(a^7*b))^(1/8)*log(a*(1/(a^7*b))^(1/8) + x) - 1/8*(1/(a^7*b))^(1/8)*log(-a*(1/(a^7*b))^
(1/8) + x)

________________________________________________________________________________________

Sympy [A]  time = 0.175374, size = 22, normalized size = 0.09 \begin{align*} - \operatorname{RootSum}{\left (16777216 t^{8} a^{7} b - 1, \left ( t \mapsto t \log{\left (- 8 t a + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x**8+a),x)

[Out]

-RootSum(16777216*_t**8*a**7*b - 1, Lambda(_t, _t*log(-8*_t*a + x)))

________________________________________________________________________________________

Giac [B]  time = 1.21413, size = 612, normalized size = 2.56 \begin{align*} \frac{\sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x + \sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a} + \frac{\sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x - \sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a} + \frac{\sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x + \sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a} + \frac{\sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \arctan \left (\frac{2 \, x - \sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}{\sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}}}\right )}{8 \, a} + \frac{\sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} + x \sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} + \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a} - \frac{\sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} - x \sqrt{\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} + \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a} + \frac{\sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} + x \sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} + \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a} - \frac{\sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} \log \left (x^{2} - x \sqrt{-\sqrt{2} + 2} \left (-\frac{a}{b}\right )^{\frac{1}{8}} + \left (-\frac{a}{b}\right )^{\frac{1}{4}}\right )}{16 \, a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(-b*x^8+a),x, algorithm="giac")

[Out]

1/8*sqrt(sqrt(2) + 2)*(-a/b)^(1/8)*arctan((2*x + sqrt(-sqrt(2) + 2)*(-a/b)^(1/8))/(sqrt(sqrt(2) + 2)*(-a/b)^(1
/8)))/a + 1/8*sqrt(sqrt(2) + 2)*(-a/b)^(1/8)*arctan((2*x - sqrt(-sqrt(2) + 2)*(-a/b)^(1/8))/(sqrt(sqrt(2) + 2)
*(-a/b)^(1/8)))/a + 1/8*sqrt(-sqrt(2) + 2)*(-a/b)^(1/8)*arctan((2*x + sqrt(sqrt(2) + 2)*(-a/b)^(1/8))/(sqrt(-s
qrt(2) + 2)*(-a/b)^(1/8)))/a + 1/8*sqrt(-sqrt(2) + 2)*(-a/b)^(1/8)*arctan((2*x - sqrt(sqrt(2) + 2)*(-a/b)^(1/8
))/(sqrt(-sqrt(2) + 2)*(-a/b)^(1/8)))/a + 1/16*sqrt(sqrt(2) + 2)*(-a/b)^(1/8)*log(x^2 + x*sqrt(sqrt(2) + 2)*(-
a/b)^(1/8) + (-a/b)^(1/4))/a - 1/16*sqrt(sqrt(2) + 2)*(-a/b)^(1/8)*log(x^2 - x*sqrt(sqrt(2) + 2)*(-a/b)^(1/8)
+ (-a/b)^(1/4))/a + 1/16*sqrt(-sqrt(2) + 2)*(-a/b)^(1/8)*log(x^2 + x*sqrt(-sqrt(2) + 2)*(-a/b)^(1/8) + (-a/b)^
(1/4))/a - 1/16*sqrt(-sqrt(2) + 2)*(-a/b)^(1/8)*log(x^2 - x*sqrt(-sqrt(2) + 2)*(-a/b)^(1/8) + (-a/b)^(1/4))/a